Name | Region | Skills | Interests |
---|---|---|---|
Aniruddha Maiti | ACCESS CSSN, Campus Champions | ||
Brandon Biggs | OnDemand | ||
David Liu | CCMNet | ||
Elizabeth Leake | CCMNet | ||
Jonathan Komperda | Campus Champions | ||
Dr. Nabeel Alzahrani | Campus Champions, CCMNet | ||
Liwen Shih | Campus Champions, ACCESS CSSN, CCMNet |
Title | Date |
---|---|
NAIRR Pilot Office Hours | 5/13/25 |
NAIRR Pilot Office Hours | 5/27/25 |
NAIRR Pilot Office Hours | 6/10/25 |
Title | Category | Tags | Skill Level |
---|---|---|---|
Enhancing LLMs with RAG: A Beginner’s Guide | Learning | ai, llm, NAIRR-pilot, generative-ai, nlp, deep-learning, machine-learning, neural-networks, reporting, artificial-intelligence, computer-science, data-science, jupyterhub, python | Beginner |
HPC-AI Resources for STEM and Non-STEM Researchers | Learning | ai, llm, generative-ai, deep-learning, machine-learning, neural-networks, visualization, artificial-intelligence, computer-science, data-science, hpc-getting-started, professional-development, software-carpentry, training, jupyterhub, python | Beginner |
I aim to run a Bayesian Nonparametric Ensemble (BNE) machine learning model implemented in MATLAB. Previously, I successfully tested the model on Columbia's HPC GPU cluster using SLURM. I have since enabled MATLAB parallel computing and enhanced my script with additional lines of code for optimized execution.
I want to leverage ACCESS Accelerate allocations to run this model at scale.
The BNE framework is an innovative ensemble modeling approach designed for high-resolution air pollution exposure prediction and spatiotemporal uncertainty characterization. This work requires significant computational resources due to the complexity and scale of the task. Specifically, the model predicts daily air pollutant concentrations (PM2.5 and NO2 at a 1 km grid resolution across the United States, spanning the years 2010–2018. Each daily prediction dataset is approximately 6 GB in size, resulting in substantial storage and processing demands.
To ensure efficient training, validation, and execution of the ensemble models at a national scale, I need access to GPU clusters with the following resources:
In addition to MATLAB, I also require Python and R installed on the system. I use Python notebooks to analyze output data and run R packages through a conda environment in Jupyter Notebook. These tools are essential for post-processing and visualization of model predictions, as well as for running complementary statistical analyses.
To finalize the GPU system configuration based on my requirements and initial runs, I would appreciate guidance from an expert. Since I already have approval for the ACCESS Accelerate allocation, this support will help ensure a smooth setup and efficient utilization of the allocated resources.
Purdue University
CCMNet
mentor, researcher/educator, research computing facilitator, CCMNet
OnDemand
mentor, researcher/educator, research computing facilitator, research software engineer, ci systems engineer, OnDemand
Arizona State University
CCMNet
student-facilitator, research software engineer, CCMNet
Elizabeth City State University
CCMNet
mentor, researcher/educator, research computing facilitator, CCMNet